315中文网 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

在湘潭大学这边参加华国数学会今年学术年会的这几天时间里,赵贤才认识了更多华国数学领域内的专家,也找各个数学领域的学者们交流沟通了。

除了找研究微分几何与微分拓扑学的吴富全之外,赵贤才在这场大会的最后一天,也就是二十三号这天的时候,也是终于找到了吴富全院士之前和他提到过的,现在正在双旦大学研究常微分动力系统的郑晓伟教授。

“郑教授,我好早就想来找你了,只是这几天都比较忙,一直都没机会……”

这天上午一共有三个报告和一场宣讲会,第一场报告是首都应用物理与计算数学研究所的汪松教授,时间是早上八点半到九点二十,报告会的标题是《well-posedability of solutioeady pressible okes equations withrge forces》。

汪松教授的这个报告,讲的是关于纳维-斯托克斯方程(okes equations)的。

纳维-斯托克斯方程是描述不可压缩流体动量守恒的运动方程,简称为n-s方程。

粘性流体的运动方程首先是由纳维在1827年提出来的,只考虑了不可压缩流体的流动,之后又由泊松在1831年提出了可压缩流体的运动方程。

后来圣维南与斯托克斯也在1845年的时候,都独立提出粘性系数为一常数的形式,都称为纳维-斯托克斯方程(okes equations)。

另外,三维空间中的n-s方程组光滑解的存在性问题被美国克雷数学研究所设定为了七个千禧年大奖难题之一。

第二场就是吴富全教授标题为《manifolds of ive curvature》的报告,第三场是赵贤才的报告。

现在,赵贤才找到郑教授的时候,正是上午2020国际数学教育大会筹备工作宣讲会结束之后,吃午餐之前。

“上次你在常微动力系统研讨会上说的那些话,我的印象也比较深刻,那场研讨会结束之后我还想去找你呢。

只不过当时我看你在研讨会结束之后,又有些匆匆忙忙的,好像是有什么要紧事情一样,就没有去打扰你。”

郑教授解释道。

“之前研讨会结束的时候,我的确是在忙一些事情。”

赵贤才说道。

很快,赵贤才便和郑晓伟教授聊到了动力系统领域的内容。

“……你对魏尔斯特拉斯型函数也有研究吗?

我最近看了克里斯托弗·毕晓普(christopher j. bishop)的《概率与分析中的分形》和格哈德·凯勒(gerhard keller)的《经典魏尔斯特拉斯函数图维数的基本证明》,对魏尔斯特拉斯型函也有一些想法。

不过,对于这个问题我一直都没想到一个很好的解决办法,没一个大概的思路。”

当他们说着说着,赵贤才提到一嘴魏尔斯特拉斯型函数的时候,郑晓伟教授有些惊讶地说道。

“对魏尔斯特拉斯型函数……我倒是没什么研究,不过的确一些想法。

郑教授准备研究魏尔斯特拉斯型函数?

如果你不介意的话,可以和我说说你对魏尔斯特拉斯型函数的想法,我看看我能不能提什么建议。”

赵贤才说道。

对于郑晓伟刚刚所提到的《概率与分析中的分形》和《经典魏尔斯特拉斯函数图维数的基本证明》这两篇文献,赵贤才也都看过。

《概率与分析中的分形》就是今年发表出来的,讲得是对分形的数学严谨介绍,强调示例和基本思想。

它从几何测度理论和概率的基本技术出发,介绍了豪斯多夫维数、自相似集和布朗运动等中心主题,以及更专业的主题,包括kakeya集合、容量、树木上的渗透和旅行推销员定理。

而《经典魏尔斯特拉斯函数图维数的基本证明》则是2014年就被上传到了arxiv上,至于它的内容,从它的标题中就能够看出来。

听赵贤才这么说之后,郑晓伟也没有藏着掖着,倒是很爽快的就和赵贤才说了他对于魏尔斯特拉斯型函数的一些想法。

维数一般都是整数,不过它也可以是分数,郑晓伟研究的是就是分形几何。

就比如一片雪花,在与环境的不断的重复的交织中形成了我们看到的美丽的形态。

而魏尔斯特拉斯型函数就像是雪花的边界,是由德国数学家卡尔·魏尔斯特拉斯在19世纪末期提出的一类处处连续而处处不可求导的函数,它也被戏称为“病态”函数。

魏尔斯特拉斯函数这类分形函数的图像就是一个“分数维”的典范例子,确定这类函数的维数问题也就成了分形几何中的经典问题,难住了许多一流的动力系统专家。

现在郑晓伟教授对赵贤才说,他对魏尔斯特拉斯型函数也有些想法,这一点倒是很正常。

“嗯……你知道巴拉兹·巴拉尼(balázs bárány)吗?”

听郑教授说完,赵贤才问了一句。

“巴拉兹·巴拉尼?

这个名字听起来好像是有点熟悉,我好像在以前看的一篇文章中有看过他的名字,他也是研究动力系统的?”

听赵贤才突然提到这么一个外国人的名字,郑教授一边在嘴里重复了一遍赵贤才说的这个名字,一边开始在在大脑中快速思索起这个名字来。

不过想了一下之后,郑教授对于这个名字还是没有什么太大的印象,只能这么对赵贤才询问道。

“嗯,他是布达佩斯技术与经济大学随机学系的教授,研究方向是几何测度理论、分形几何和遍历理论以及动力系统。”

赵贤才向郑教授解释道。

一听赵贤才提到布达佩斯技术与经济大学,郑教授这才反应过来他之前在哪篇文献上看到过巴拉兹·巴拉尼的名字。

布达佩斯技术与经济大学是一所匈牙利大学,简称bme,这是欧洲着名的理工大学,拥有两百多年的建校历史。

bme除了被认为是欧洲最为古老的理工学院之外,同时也被认为是全世界历史最为悠久的理工学院之一,它的第一个校区建于1892年,坐落在美丽的多瑙河岸边,1987年还被联合国教科文组织认定为了世界遗产。

“他最近发表了关于魏尔斯特拉斯型函数的文章?”

在想起来巴拉兹·巴拉尼的名字之后,郑晓伟教授又对赵贤才询问道。

315中文网推荐阅读:末世:极度崩坏不死神奴港综1986我在末日三国杀矩阵游戏穿越废土,多拾几次荒就老实了!征战诸天从青云门开始无尽穿越世界快穿之我有特殊的工作技巧游戏王之削血之王末日领主废土领主和他的沙雕玩家们诸天大化身文娱高手超级资源帝国极限成长系统全民空间,进攻异界天书进化荣耀星空下麻衣风水师星途纪元:银河开拓者永生好莱坞巨星电脑附身随身带着星际争霸武道禁书领袖!为了人族,你就多娶点吧!亮剑世界:我疯狂扩兵位面时空指南变身机械圣女系统竟是GPT!?星海:从零开始将人类送上星空苟在末世搞黑科技退婚后,厉总私下跪地求亲亲星空始祖觉醒中脊蛊:从灵笼开始吞噬无尽杀戮:我的火球有bug!星空极限末世游戏,提前八小时氪金刷道具末日求生莫管他人警告!禁止S级觊觎顶级貌美向导无限之万界独尊未来一亿年真仙奇缘II封魔网游修仙:开局睡了赛博画皮末世空间法则末日,姐有系统做圣母怎么了?漫威之神级法师死神垂钓科技世界:我能拯救未来狂霸巫师
315中文网搜藏榜:我为人类造诺亚念兰溪我在末世直播变异快穿之女配对恋爱不感兴趣重生末世之我哥是反派湮灭2089快穿:等我来寻你变成尸王的我,率无尽尸潮杀疯了末日:开局听见老婆心声,她是重生者某崩坏的型月世界黑石密码重回末世:我靠亿万物资躺赢天灾人在东京,专业男友末世女僵尸无限之军王丧尸游戏,开局遇到病娇末世:外星飞船撞向地球灭绝人类快穿:反派女配,你有毒木叶之井上千叶末世:无限军团系统开局暗黑之渊我总是被谋杀娱美人浩海微尘装甲咆哮潇洒在影视世界末世:我有一屋子美女房客抗战:从四行仓库开始末世:开局推倒病娇校花我在末世双修无敌熵火燎原:源芯觉醒小青铜你别怂你在阴间我在阳末日诛邪令我本肥宅,奈何丧尸围城篮球之魔沧海无缘星空蚁族重生之山村传奇穿越诸天聊天群末世:从获得紫薇星卡开始无敌!逃生直播,暴力美人她比恶诡还凶超神学院之守护银河大帝经末世之枭雄崛起我能召唤伞兵重生末日前百亿物资打造地下堡垒女主她又失忆了带着墓园闯末世丧瘟
315中文网最新小说:末世:开局征服夫人,情满桃花园末日:从逃荒开始无敌科技探索星空御兽之我真不是天才F级炮灰?我靠运气掀翻神明牌桌废土女王,我能净化全世界星海匠师末世兽途:恶毒雌兽的反派救赎知晓学院传闻后,开始疯狂探索终焉纪元:铁躯暴雨子宫星轨逆转从废柴到万界织命师拥有相反词条的我无限套娃文明重启:骸骨之路我的信徒太强,把宇宙玩坏了会玩吗?学别人重生快穿之魔尊大佬吊打诸天末世,开局召唤陷阵营僵域:终末皇权神豪快穿:攻略男神,返现赚麻了穿越到星际,纯人类妹子战力爆表什么,系统让我诸天旅行末世尸变:我靠手环点满基建技能卡拉彼丘在弦之上全校一起穿越到异界猛诡宿舍:校花求我别睡了星穹裂隙:幸存者的黎明转动四方从末世集美开始末世第一木系强者张明帝:终极代码星际谜航:迷雾后的真相海上求生,海王天花板了解一下?无形纪元求生:我的附注能推演万物无限之地球劫星际挖矿奔小康大雍尸潮:从灵植开始的生存之路我从末世踏星海智械穹顶全球冰封:我的空间能无限囤货末世之天灾看见我就饱了重生末日霸主星骸余烬:零号指令暗影熵变:虚境破晓纪废土种田?先修好我的机甲重生之别看我就是一只猫末日重启九喵战队手握神级农场混末世我靠碰瓷称霸末世黑日纪元2059