315中文网 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

2.4 结构因果模型(Scm)

2.4.1 基本定义[5][11]

这是一种基于因果图(casual graph),构建各类因子间因果关系的方法。该方法可以将因果图转为结构化等式(structural equations),并通过do算子干预因果图,打破混淆因子干扰,完成因果发现。

那什么是因果图呢,这是一个有向无环图(dAG),节点表示因子,有向边表示因果关系和大小。如下图(a)是Scm的一个示例。其中t为treatment(即要分析的“因”),y是目标,x是混淆因子。显然,x的存在干扰了分析t对y的影响,作者提出通过do算子去除混淆因子x对treatment的影响,这也是Scm做因果分析的关键。

那具体是怎么实现的呢?我们需要先了解因果图里的经典结构

2.4.2 网络结构与前后门准则[11][12]

三种经典的图结构

当我们分析x和Y的因果关系时,如果存在其他变量Z,则它们的关系不外乎以下三种图结构。

链式(a):x -> Z -> Y。有 且

叉式(b):x <- Z -> Y。同链式有 且

V式(c):x -> Z <- Y。有 且

那么针对这三种图结构,如何输出x变化对Y的影响呢?我们的重点是如何“过滤”变量Z对分析的干扰(这也是因果识别的目标)

2. 后门准则:该准则对应叉式的图结构

后门标准(后门准则):如果变量集Z满足:1 不包含x的子孙节点;2 阻断了x到Y的所有后门路径。则称Z满足(x, Y)的后门准则

后门调整:基于后门路径,通过干预do算子消除混淆因子的影响,仅使用已知的数据分布,估计变量之间的因果效应

3. 前门准则:该准则对应链式结构

前门标准(前门准则):如果变量集Z满足:1 阻断了x到Y的所有路径;2 x到Z之间没有未阻断的路径(x到Z不存在后门路径);3 Z到Y之间的所有后门路径都被x阻断。则称Z满足(x, Y)的前门准则

前门调整:和后门调整类似,通过do算子去除前门路径(链式)的影响

2.4.3 示例说明[13]

这两个准则应该如何使用呢?这里提供一个case

背景:有一种药物,对于男士群体而言,使用该药物后发病率降低。对于女士群体而言,使用该药物后发病率也会降低。但是,对男女人群一起统计,则结论相反

假设t=1表示服药,t=0表示未服药,Y=1表示发病的概率,Y=0表示未发病的概率。显然p ( Y = 1 i t = 1 ) = 0.78 < p ( Y = 1 i t = 0 ) = 0.83,这是因为没有考虑混淆变量“性别”的影响,出现了辛普森悖论。

如下图,通过后门调整,去除掉性别对服药的干扰。则最终 p(Y=1ido(x=1))=0.832 > p(Y=1ido(x=0))=0.781,说明服用此药物确实可以降低发病率。

后面调整的计算逻辑如下:

2.4.4 因果识别

当前Scm模型更多用于因果识别,这是因果推断伴生的研究课题。其目标是从一系列的因子里,找出各因子间的因果相关性并输出因果图,则后续可根据casual graph分析两两因子间的相互影响,揭示因子对结果的多层传递性影响。举个例子[14],我们研究影响产品销量的因素时,可能存在产品价格、产品属性、门店信息、市场竞争情况等因子需要考虑。我们可以构建多个类似下图的因果图模型,然后通过do算法实现干预,判断各因子间存在的因果关系,最终输出概率最大的因果图作为识别的结果[15][16]。本文主要关注因果推断,因果识别不做展开讨论,更多示例可参考相关文章[17]

2.5 潜在结果模型(Rcm)[11]

Rcm关注的是干预前后的期望变化,即2.2所述的treatment effect。该模型不考虑分析所有因子的因果性,只关注treatment和output之间的因果强弱,因此也不需要构建完整了因果图,而是假设treatment和output外的其他因子均为混淆因子,构建粗略的因果图,通过预测反事实的结果,并于观测对比来完成因果推断。

该模型的期望输出分为四种(AtE\/Att\/cAtE\/ItE),可根据业务需求选择。对于for单个研究对象的反事实推断,模型的目标是计算每一个样本i的因果效应,即 = (t=1)? (t=0)。以3.3服药和康复的case为例,t = 是否服药,Y = 是否康复。我们知道,一个人是无法同时观测到吃药和不吃药对康复的影响,Scm也无法推测服药对某个用户的价值。而Rcm则会根据数据形态(即用户属性、历史表现以及混淆因子“年龄”等)预测实际未发生的行为将产生的结果,从而推断出ItE。同理可得出AtE、Att、cAtE。

因为业界很多时候关注的是单个treatment因子的价值,所以Rcm往往是业界的首选。

2.5.1 基本假设

Rcm存在如下3个基本假设[18]:

稳定单元干预值假设(Stable Unit treatment Value Assumption, SUtVA):任意单元的潜在结果都不会因为其他单元的干预发生改变而改变,且对于每个单元,其所接受的每种干预不存在不同的形式或版本,也不会导致不同的潜在结果。以吃药康复的例子解释这里的两层含义,其一是你吃不吃药不影响我是否康复;其二是每种干预是唯一的,吃药不存在吃很多、吃很少的情况,统一药量,要考虑药量就要设置不同的干预值(即此时干预变量不能只是0和1)

315中文网推荐阅读:我老姐实在太有钱了一不小心嫁冤家重生学神有系统重生之我真没想当大佬啊特级诡兵焚烟散镇国战神我被男神克死后赘婿出山豪门大少的私宠妻穿越之喜当红娘老婆你说实话,孩子到底是谁的?后海有家酒吧妙贞不可言四合院:离谱!我竟然有无限肉吃花开春暖我的26岁总裁妻子假少爷被赶回农村,开启逆袭人生!传奇垂钓:开局钓起十斤大鱼开局获得剪纸术情痒女施主请留步人在海贼,召唤美漫天神诀金玉良缘之肖少霸爱无极异界游相宝2:秘物田园小当家死人经都市最强神龙天庭典狱长巨星夫妻都市之至尊狂少影帝总是贪恋我的美貌重生九零全能学霸重生后郡主被权臣勾引啦江山尽风流我在黑道沉浮的日子高手寂寞3我即天意软妹写手成神记从昆仑走出的绝世强者天命大反派:从吊打男主角开始崛起签到十年:灵气终于复苏了!极品婆婆的重生之路别慌,学霸老爹和我一起穿越了梦回之苟在深圳做房东幽幽情丝三千泪仙途外卖:凡心不灭炼器祖师讨厌女人少奶奶每天都在崩人设
315中文网搜藏榜:都市之归去修仙稼穑人生最强小村医重生八零之军少小萌妻同路人,平凡十年御灵:天使女仆总想把我养成废人被暴君强宠的金丝雀翅膀硬了四合院:我何雨柱,送贾张氏坐牢穿到八零后我成了锦鲤末日?宅舞冒险出道即是巅峰1979全民:开局觉醒sss级召唤天赋我为猎手重生八零:肥妞翻身记逆习大老婆不负荣光,不负你盛婚甜宠:先生,早上好变身:武道女帝惯着他治愈他娇妻得宠:盛少别乱来柳条兄弟之兄弟故事会王妃又又又去除妖了恋爱后,学霸她成了撒娇精随机职业体验,满级人类震惊网友重生之我是神君万亿打赏金,我在抖音称王!豪门权少密爱成瘾绝色总裁的贴身高手返穿你与流年皆不在重回1998当富翁奉旨抢亲,纨绔太子喜当娘多子多福,我打造三千校花女团!团宠大佬你马甲掉了超品战兵红颜三千特种兵王在都市极品透视妖孽狱神归来对首席大人的攻略争夺战浅浅系统:至高无上话语权重回八零小辣妻法庭索赔1400万,你疯了?长路漫漫只为你刚穿越的我被直播开棺写日记也能无敌四合院:重生火红年代四番队的三席都市之逆天大反派
315中文网最新小说:队长你宝贝老婆又靠画画破案了天幕直播:带着老祖宗们玩遍诸天这个挂逼不太野乖张诱引日暮乡关之故土难离玉阶血被丢进荒山后,她成了山神八零小木匠随军皇上他年纪轻轻,竟然!被全家抛弃后,小福宝成皇家团宠夫人要和离?疯批权臣亲她红温小宫女她只想当咸鱼重生之得意人生小美人她夜夜撩,病娇集体急红眼出嫁后公子他疯了重生成死对头的婢女后小司机的美女总裁老婆随母改嫁下乡,三个继兄宠我入骨深港未眠四嫁帝王,三位前夫坐不住了断亲后,我带全村悠哉度荒年天崩开局:伪装神女我赢麻了替兄为赘佟贵妃只想修仙鉴芳年刚穿八零,资本家小姐要买我老公玫瑰戟她算哪门子表姑娘婉风沉王府里来了个捡破烂的崽崽重生矿奴,却成为人类救世主?王府弃妇,我靠养崽富可敌国小撩精太黏人,被偏执校草亲哭穿书被鞭打,我抱上黑化首辅大腿京夜婚动[全职高手]身为策划,攻略玩家与病弱兄长共梦村花每天都在给自己披马甲一鸣江山定我在板鸭很开心双生兄弟要换亲?我稳做侯门主母换嫁随军,谁家凶兽奶呼呼呀!殿下,你抢的王妃是顶级大佬野欲诱吻于他怀中轻颤净水迎帆我女朋友是学医的大小姐她一心只想上位全家偷听心声吃瓜,我赢麻了荒年肉满仓,缺德后娘养歪女主!