315中文网 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

或许顶级学者之间的经历都具有相似性,学一科,爱一科,干一科,精一科,钻一科,都是一个多面手。

米歇尔毕业于图宾根大学生物化学系。

但在1979年,他却似乎摒弃了之前的研究方向,转而在维尔兹堡大学研究起了 x 射线晶体学。

这个决定其实相当需要勇气,因为这个学科在当时属于真正的新兴学科。

学起来看似很有意思,但其实相当痛苦。

从理论上来说,它是一个主要研究内容为晶体结构的学科。

原理是利用x射线穿过晶体时与晶体中的原子相互作用,通过测量和分析射线在晶体中的衍射现象,从而确定晶体的结构和原子排列方式。

从介绍来看,它似乎是属于物理学的范畴。

但其实并不是,这也是它使人痛苦的原因所在。

它可以用来确定有机或无机晶体的分子结构,分析晶体纯度与组成,对晶体形态和晶体性质的研究提供巨大帮助。

与此同时,它也能帮助研究生物大分子的结构和功能。

所以,x射线晶体学是一门在化学、物理、生物等领域中均有重要应用的学科。

这也解释了米歇尔的研究经历一直在生物化学和生物物理摇摆的原因。

他在1988获得诺贝尔化学奖的成果,膜蛋白的结晶和从紫色细菌红色假单胞菌阐明光合反应中心的三维结构,如今在医学等多个其他领域上也被广为应用。

米歇尔长期从事于光合作用及其重要蛋白质的研究,这次也不例外。

他之前在关于植物在光反应和暗反应进行光合作用的调控机理研究遇见了阻碍。

这个过程中需要研究植物在各种条件影响下,期间光合作用的变化情况。

毫无疑问,米歇尔费尽心思从进行了植物的各个生长阶段起开始,模拟了各种限制条件进行实验,并同时佐以光反应和暗反应的辅助实验。

但也因此造成了整个实验的体量相当之大。

不过他是诺奖大佬,这个实验计划依然得到了强力推动,马普学会为此注入巨量经费。

在科研环境异常严谨的徳国,米歇尔终于得到这个研究的阶段性成果,植物的光合作用受到一种暂名为叶绿素u特殊因子的调控和影响。

现在,他们的研究只差临门一脚。

那就是需要弄清楚这种叶绿素u究竟从何处而来,因什么而产生。

只要弄清这个问题,米歇尔相信自己成果的轰动程度将会不亚于催化光合作用的光合磷酸化和呼吸作用的氧化磷酸化的酶的动态结构与反应机理研究。

而后者则帮助约翰·沃克与保罗·波耶尔获得了1997年的诺贝尔化学奖。

也就是说,一旦他完成这个研究,米歇尔则有可能成为继居里夫人、莱纳斯·卡尔·鲍林、约翰·巴丁、弗雷德里克·桑格、卡尔·巴里·夏普莱斯之后。

全世界第六位两次获得诺贝尔奖的科学家。

但米歇尔年纪大了,他对两度获得诺贝尔奖没有野心也没有执念。

但他仍希望在自己剩下的时间里,为植物光合作用领域做出重大突破。

过去的数年里,他一直在为此而努力,但一直没有太大的新进展。

只不过情况在去年似乎得到了一些改变。

他时常关注国际顶级期刊,期冀能够获取到研究灵感。

然而,就在去年,来自cell期刊上关于植物细胞天然免疫互作机制的研究成果给了他一些借鉴思路。

他并不觉得光合作用和细胞免疫有什么太大关联,但这篇论文上关于研究里面众多影响免疫进程的细胞因子研究方法吸引了他的注意力。

尤其是里面关于植物细胞平衡态的开创性理论,就算是他也不得不拍手叫绝。

于是他严格按照陆时羡的平衡态理论,建立了一个关于植物进行光合作用中各种影响因子的翻版“司南模型”。

米歇尔的想法是美好的,这个计划虽然得到了近乎完美的执行,但最后得到的结果并不尽如人意。

拟合出来的模型距离准确差了十万八千里。

显然,结果验证了这个研究思路一开始就是错的。如果只是单纯的照搬照抄能够成功的话,那么历史上就不会出现东施效颦、邯郸学步和优孟衣冠诸如此类的成语。

这个结果同时也验证了顶级研究团队也会经历失败。

不过,顶级研究团队较之于一般研究团队最大的差别就是善于从失败中总结和汲取经验。

米歇尔尽力睁开有些老态龙钟的双眼:“陆的平衡态理论脱胎于植物免疫调节,而我们光合作用调节运用了他的平衡态理论,得到的模拟数据却连一组都和预期不太吻合。”

“也就是说,我们之前忽视了一个问题,免疫调节本身就是植物进行光合作用机理研究的重要一环。”

“有没有这样一种可能,叶绿素u受到来自植物细胞免疫调控的影响。”

此时,米歇尔的双眼闪烁着锐利的光,格外的耀眼。

“我有预感到,我们正在逐渐接近真相。”

站在他旁边的老者是马蒂亚斯.曼。

他同样不简单,曾于2012年获得了戈特弗里德·威廉·莱布尼茨奖。

这个奖项在徳国属最高科研奖,在该国人的眼里,此项奖甚至能够和诺奖相提并论。

与此同时,它也是世界上奖金最高的科学奖项之一,远高于诺贝尔奖。

对此有一个比较浪漫的说法。

那就是设置如此高规格的奖金的意义是,为徳国最顶尖科研工作者提供“童话般的自由“的科研环境,让他们不必为繁冗的行政程序而烦恼。

马蒂亚斯对此发表了自己的看法:“但愿如此,不过我想这个研究结束后,不管究竟是不是,我都有一个想法。”

“那就是邀请陆这位年轻的生物学家来徳国进行学术交流。”

“我相信马普学会会因为他的到来获得一些活力,现在的学会有些暮气沉沉。”

米歇尔笑了笑:“很不错的想法!”

315中文网推荐阅读:我老姐实在太有钱了一不小心嫁冤家重生学神有系统重生之我真没想当大佬啊特级诡兵焚烟散镇国战神我被男神克死后赘婿出山豪门大少的私宠妻穿越之喜当红娘老婆你说实话,孩子到底是谁的?后海有家酒吧妙贞不可言四合院:离谱!我竟然有无限肉吃花开春暖我的26岁总裁妻子假少爷被赶回农村,开启逆袭人生!传奇垂钓:开局钓起十斤大鱼开局获得剪纸术情痒女施主请留步人在海贼,召唤美漫天神诀金玉良缘之肖少霸爱无极异界游相宝2:秘物田园小当家死人经都市最强神龙天庭典狱长巨星夫妻都市之至尊狂少影帝总是贪恋我的美貌重生九零全能学霸重生后郡主被权臣勾引啦江山尽风流我在黑道沉浮的日子高手寂寞3我即天意软妹写手成神记从昆仑走出的绝世强者天命大反派:从吊打男主角开始崛起签到十年:灵气终于复苏了!极品婆婆的重生之路别慌,学霸老爹和我一起穿越了梦回之苟在深圳做房东幽幽情丝三千泪仙途外卖:凡心不灭炼器祖师讨厌女人少奶奶每天都在崩人设
315中文网搜藏榜:都市之归去修仙稼穑人生最强小村医重生八零之军少小萌妻同路人,平凡十年御灵:天使女仆总想把我养成废人被暴君强宠的金丝雀翅膀硬了四合院:我何雨柱,送贾张氏坐牢穿到八零后我成了锦鲤末日?宅舞冒险出道即是巅峰1979全民:开局觉醒sss级召唤天赋我为猎手重生八零:肥妞翻身记逆习大老婆不负荣光,不负你盛婚甜宠:先生,早上好变身:武道女帝惯着他治愈他娇妻得宠:盛少别乱来柳条兄弟之兄弟故事会王妃又又又去除妖了恋爱后,学霸她成了撒娇精随机职业体验,满级人类震惊网友重生之我是神君万亿打赏金,我在抖音称王!豪门权少密爱成瘾绝色总裁的贴身高手返穿你与流年皆不在重回1998当富翁奉旨抢亲,纨绔太子喜当娘多子多福,我打造三千校花女团!团宠大佬你马甲掉了超品战兵红颜三千特种兵王在都市极品透视妖孽狱神归来对首席大人的攻略争夺战浅浅系统:至高无上话语权重回八零小辣妻法庭索赔1400万,你疯了?长路漫漫只为你刚穿越的我被直播开棺写日记也能无敌四合院:重生火红年代四番队的三席都市之逆天大反派
315中文网最新小说:这个挂逼不太野乖张诱引日暮乡关之故土难离玉阶血被丢进荒山后,她成了山神八零小木匠随军皇上他年纪轻轻,竟然!被全家抛弃后,小福宝成皇家团宠夫人要和离?疯批权臣亲她红温小宫女她只想当咸鱼重生之得意人生小美人她夜夜撩,病娇集体急红眼出嫁后公子他疯了小司机的美女总裁老婆随母改嫁下乡,三个继兄宠我入骨深港未眠四嫁帝王,三位前夫坐不住了断亲后,我带全村悠哉度荒年天崩开局:伪装神女我赢麻了替兄为赘佟贵妃只想修仙鉴芳年刚穿八零,资本家小姐要买我老公玫瑰戟她算哪门子表姑娘婉风沉王府里来了个捡破烂的崽崽重生矿奴,却成为人类救世主?王府弃妇,我靠养崽富可敌国小撩精太黏人,被偏执校草亲哭穿书被鞭打,我抱上黑化首辅大腿京夜婚动[全职高手]身为策划,攻略玩家与病弱兄长共梦村花每天都在给自己披马甲一鸣江山定我在板鸭很开心双生兄弟要换亲?我稳做侯门主母换嫁随军,谁家凶兽奶呼呼呀!殿下,你抢的王妃是顶级大佬野欲诱吻于他怀中轻颤净水迎帆我女朋友是学医的大小姐她一心只想上位全家偷听心声吃瓜,我赢麻了荒年肉满仓,缺德后娘养歪女主!和死对头双穿,冷面丈夫成了权臣恶毒公主觉醒后,他们都想当驸马开荒躲乱世,我家过的太富裕了!